### List datatype

LYAHFGG:

On the other hand, a value like `[3,8,9]` contains several results, so we can view it as one value that is actually many values at the same time. Using lists as applicative functors showcases this non-determinism nicely.

Let’s look at using `List` as Applicatives again:

``````scala> import cats._, cats.data._, cats.implicits._
import cats._
import cats.data._
import cats.implicits._
scala> (List(1, 2, 3), List(10, 100, 100)) mapN { _ * _ }
res0: List[Int] = List(10, 100, 100, 20, 200, 200, 30, 300, 300)``````

let’s try feeding a non-deterministic value to a function:

``````scala> List(3, 4, 5) >>= { x => List(x, -x) }
res1: List[Int] = List(3, -3, 4, -4, 5, -5)``````

So in this monadic view, a `List` context represents a mathematical value that could have multiple solutions. Other than that manipulating `List`s using `for` notation is just like plain Scala:

``````scala> for {
n <- List(1, 2)
ch <- List('a', 'b')
} yield (n, ch)
res2: List[(Int, Char)] = List((1,a), (1,b), (2,a), (2,b))``````