What we wanted was a function that generalized on
List
. … So we want to generalize onfoldLeft
operation.
object FoldLeftList {
def foldLeft[A, B](xs: List[A], b: B, f: (B, A) => B) = xs.foldLeft(b)(f)
}
def sum[A: Monoid](xs: List[A]): A = {
val m = implicitly[Monoid[A]]
FoldLeftList.foldLeft(xs, m.mzero, m.mappend)
}
sum(List(1, 2, 3, 4))
// res1: Int = 10
sum(List("a", "b", "c"))
// res2: String = "abc"
sum(List(1, 2, 3, 4))(multiMonoid)
// res3: Int = 24
Now we can apply the same abstraction to pull out
FoldLeft
typeclass.
trait FoldLeft[F[_]] {
def foldLeft[A, B](xs: F[A], b: B, f: (B, A) => B): B
}
object FoldLeft {
implicit val FoldLeftList: FoldLeft[List] = new FoldLeft[List] {
def foldLeft[A, B](xs: List[A], b: B, f: (B, A) => B) = xs.foldLeft(b)(f)
}
}
def sum[M[_]: FoldLeft, A: Monoid](xs: M[A]): A = {
val m = implicitly[Monoid[A]]
val fl = implicitly[FoldLeft[M]]
fl.foldLeft(xs, m.mzero, m.mappend)
}
sum(List(1, 2, 3, 4))
// res5: Int = 10
sum(List("a", "b", "c"))
// res6: String = "abc"
Both Int
and List
are now pulled out of sum
.
In the above example, the traits Monoid
and FoldLeft
correspond to Haskell’s typeclass.
Cats provides many typeclasses.
All this is broken down into just the pieces you need. So, it’s a bit like ultimate ducktyping because you define in your function definition that this is what you need and nothing more.