We saw Id
in passing while reading EIP, but it’s an interesting tool, so we should revisit it.
This is also called Identity, Identity functor, or Identity monad, depending on the context.
The definition of the datatype is quite simple:
type Id[A] = A
Here’s with the documentation and the typeclass instances:
/**
* Identity, encoded as `type Id[A] = A`, a convenient alias to make
* identity instances well-kinded.
*
* The identity monad can be seen as the ambient monad that encodes
* the effect of having no effect. It is ambient in the sense that
* plain pure values are values of `Id`.
*
* For instance, the [[cats.Functor]] instance for `[[cats.Id]]`
* allows us to apply a function `A => B` to an `Id[A]` and get an
* `Id[B]`. However, an `Id[A]` is the same as `A`, so all we're doing
* is applying a pure function of type `A => B` to a pure value of
* type `A` to get a pure value of type `B`. That is, the instance
* encodes pure unary function application.
*/
type Id[A] = A
implicit val catsInstancesForId
: Bimonad[Id] with CommutativeMonad[Id] with Comonad[Id] with NonEmptyTraverse[Id] with Distributive[Id] =
new Bimonad[Id] with CommutativeMonad[Id] with Comonad[Id] with NonEmptyTraverse[Id] with Distributive[Id] {
def pure[A](a: A): A = a
def extract[A](a: A): A = a
def flatMap[A, B](a: A)(f: A => B): B = f(a)
def coflatMap[A, B](a: A)(f: A => B): B = f(a)
@tailrec def tailRecM[A, B](a: A)(f: A => Either[A, B]): B =
f(a) match {
case Left(a1) => tailRecM(a1)(f)
case Right(b) => b
}
override def distribute[F[_], A, B](fa: F[A])(f: A => B)(implicit F: Functor[F]): Id[F[B]] = F.map(fa)(f)
override def map[A, B](fa: A)(f: A => B): B = f(fa)
override def ap[A, B](ff: A => B)(fa: A): B = ff(fa)
override def flatten[A](ffa: A): A = ffa
override def map2[A, B, Z](fa: A, fb: B)(f: (A, B) => Z): Z = f(fa, fb)
override def lift[A, B](f: A => B): A => B = f
override def imap[A, B](fa: A)(f: A => B)(fi: B => A): B = f(fa)
def foldLeft[A, B](a: A, b: B)(f: (B, A) => B) = f(b, a)
def foldRight[A, B](a: A, lb: Eval[B])(f: (A, Eval[B]) => Eval[B]): Eval[B] =
f(a, lb)
def nonEmptyTraverse[G[_], A, B](a: A)(f: A => G[B])(implicit G: Apply[G]): G[B] =
f(a)
override def foldMap[A, B](fa: Id[A])(f: A => B)(implicit B: Monoid[B]): B = f(fa)
override def reduce[A](fa: Id[A])(implicit A: Semigroup[A]): A =
fa
def reduceLeftTo[A, B](fa: Id[A])(f: A => B)(g: (B, A) => B): B =
f(fa)
override def reduceLeft[A](fa: Id[A])(f: (A, A) => A): A =
fa
override def reduceLeftToOption[A, B](fa: Id[A])(f: A => B)(g: (B, A) => B): Option[B] =
Some(f(fa))
override def reduceRight[A](fa: Id[A])(f: (A, Eval[A]) => Eval[A]): Eval[A] =
Now(fa)
def reduceRightTo[A, B](fa: Id[A])(f: A => B)(g: (A, Eval[B]) => Eval[B]): Eval[B] =
Now(f(fa))
override def reduceRightToOption[A, B](fa: Id[A])(f: A => B)(g: (A, Eval[B]) => Eval[B]): Eval[Option[B]] =
Now(Some(f(fa)))
override def reduceMap[A, B](fa: Id[A])(f: A => B)(implicit B: Semigroup[B]): B = f(fa)
override def size[A](fa: Id[A]): Long = 1L
override def get[A](fa: Id[A])(idx: Long): Option[A] =
if (idx == 0L) Some(fa) else None
override def isEmpty[A](fa: Id[A]): Boolean = false
}
Here’s how to create a value of Id
:
import cats._, cats.syntax.all._
val one: Id[Int] = 1
// one: Id[Int] = 1
The functor instance for Id
is same as function application:
Functor[Id].map(one) { _ + 1 }
// res0: Id[Int] = 2
The apply’s ap
method, which takes Id[A => B]
, but in reality just A => B
is also implemented as function application:
Apply[Id].ap({ _ + 1 }: Id[Int => Int])(one)
// res1: Id[Int] = 2
The FlatMap’s flatMap
method, which takes A => Id[B]
is the same story. It’s implemented function application:
FlatMap[Id].flatMap(one) { _ + 1 }
// res2: Id[Int] = 2
At a glance, Id
datatype is not very useful. The hint is in the Scaladoc of the definition: a convenient alias to make identity instances well-kinded. In other words, there are situations where we need to lift some type A
into F[A]
, and Id
can be used to just do that without introducing any effects. We’ll see an example of that later.